第14卷第

爬山法控制

(武汉测绘科技大学) (中国科学院光电技术研究所)

提要:介绍微机控制单块 KDP 晶体自动定向系统,它可将 KDP 晶体调整到它的最佳相位匹配位置。系统的控制精度 E=±16.3 角秒,具有实时跟踪相位匹配角变化的能力,可补偿温度漂移和外界振动对相位匹配角的影响。

Auto-orientation of KDP crystals in laser frequency doubling

Wang Wenning

(Wuhan Technical University of Surveying and Mapping, Wuhan)

Yi Zhang, Jiang Wenhan

(Institute of Optics and Electronics, Academia Sinica, Chengdu)

Abstract: This paper puts foward a proposal for auto-orientation of a KDP crystal array and describes a microprocessor auto-orientation system which can auto-regulate the single piece of KDP crystal to its optimal matching direction. The control accuracy of the system $E = \pm 16.3$. s. The system is able to track the change of the matching angle in real-time. It is able to compensate the influence of temperature drift and external vibration on the orientation.

大口径激光倍频技术一方面要求大口径 优质倍频晶体,另一方面必须解决倍频晶体 的定向问题以提高倍频转换效率,但是,在大 口径晶体的生长、加工和抛光技术中面临许 多困难,且耗资巨大。1981年劳伦斯·利弗 莫尔实验室提出了以小拼大的组合晶体列阵 方案^{□1}, 企图克服生长大口径晶体所遇到的 困难。但这个方案对温度控制极其严格,要 求列阵的环境温度≤±0.002℃;其次,列**阵** 组合仍采用人工装调,未解决自动定向问题。 我们运用自适应光学实时控制的概念,提出 了用微机对 KDP 晶体列阵进行实时自动 定 向,进而提高大口径激光的倍频转换效率。

其中,为入射基波光束截筋积的半

理 原

由于方位角 φ 的变化对倍频转换效率 η_{SHG}的影响远不如相位失配角 4θ 的变化 对 η_{SHG}的影响大,且 φ 能够控制在希望的精度 以内,因此,可以认为 η_{SHG} 这时仅是失配角

收稿日期: 1986年6月23日。

40的函数,因而倍频效率可写为:

 $\eta_{\text{SHG}} = C_0 \sin^2 c(\beta \, d\theta)$ (1) 式中 C_0 为常数,此式就是微机优化处理的指标函数。

对由 N 块晶体元组成的列阵, 假设入射 基波均匀, 晶体元均匀, 则出射倍频光功率随 各晶体元相位匹配情况而异。以图 1 由四块 KDP 晶体元组合列阵为例, 设各晶体元失配 角分别为 401、402、403、404, 则总的倍频转换 效率为:

$$\eta_{\rm SHG} = \alpha \frac{\left(\frac{b}{r}\right)^2 P_1}{4\pi b^2} d_{\rm stf}^2 \sum_{i=1}^4 \sin^2 c \left(\beta \, \Delta \theta_i\right)$$
(2)

其中r为入射基波光束截面积的半径,如图 1所示,b为晶体元的宽度。如果 $b \gg a$,则有 $a+b \approx r$,代入式(2),由式可得到

$$\eta_{\rm SHG} = \alpha \frac{P_1}{4\pi b^2} d_{eff}^2 \sum_{i=1}^4 \sin^2 c \left(\beta \, \Delta \theta_i\right) \left(\frac{b}{b+a}\right)^2 \tag{3}$$

由假设 $b \gg a$, 可见 $[b/(b+a)]^2 \approx 1$ 。 当各晶体元均处于匹配方向时, $\Delta \theta_i = 0$, 这时, η_{SHG} 达到最大:

 $\eta_{\rm SHGmax} = \alpha \, \frac{P_1}{\pi b^2} \, d_{eff}^2 \tag{4}$

此信即是口径为2b×2b的整块晶体满足匹 配条件时的倍频转换效率值。这意味着用小 块晶体元拼成的列阵其倍频效果近似于相同 口径的整块晶体。

三、爬山法控制原理及实现

由式(1)可知,对于给定的晶体和输入基 波功率,当 Δθ 在给定范围内变化时,指标函 数 η_{sne} 仅是 Δθ 的函数,且有唯一的最大值。 因此,可用爬山法原理对倍频晶体进行自动 定向,使其转换效率 η_{sng} 的值锁定在最大值 附近。

爬山法的控制原理是首先找出满足约束 条件的任一点 X₀, X₀表示由多个变量组成 的一个向量,即

 $X_0 = \{x_{10}, x_{20}, \dots, x_{n0}\}^T$ (5) 求出在 X_0 处的指标函数 $P(X_0)$,随后在满 足约条件域内随机移动一步, $X_0 \rightarrow X_1 = X_0$ + ΔX_0 ,其中 $\Delta X_0 = \{\Delta x_{10}, \Delta x_{20}, \dots, \Delta x_{n0}\}^T$ 。 如果 ΔX_0 的移动方向正好使 $P(X_1) >$ $P(X_0),这样不断移动 X, X_0 \rightarrow X_1 \rightarrow \dots \rightarrow$ X_m ,且有 $P(X_0) < P(X_1) < \dots < P(X_m)$, 可以证明经过有限步移动后,系统就可趋于 最大值^[22]。

本系统设计了可变步长的等步长寻优方 法^[33],其基本算法是:系统开始时采用大步距 寻优,当到达某一给定指标时减小寻优步距, 继续搜索寻优,直至满足希望的性能指标。由 于相位匹配角 θ 是一个空间锥体角,可由俯 仰方向和方位方向唯一确定,设它们分别用 α和 y 表示,让其各自进行调整,直至逼近最 大值。由于寻优过程中,仅让一个方向变化, 另一方向保持不动,这就为控制系统提供了 十分简单的条件,经过有限次搜索以后,倍频 晶体的转换效率达到最大值,晶体处于最佳 匹配位置。

对 N 元晶体列阵,其控制原理是相同的,只需分别对 N 元晶体进行调整,最后使 倍频转换效率达到最大值。

对于单块 KDP 晶体的定向系统,它包 括倍频部分和控制部分,系统框图如图2所 示。脉冲激光通过 KDP 晶体后,光束中同

· 604 ·

图2 单块 KDP 晶体实验系统

时含有基频光和倍频光,用分光镜 L 将其分 开,分别用两个光电探测器 D₁、D₂ 探测,经 前置电路 W₁、W₂ 处理后输入 A/D 转换器。 转换的数字存入微处理机 M。在微 机 中经 过计算和处理后得到转换效率值,与前次进 行比较得到校正信号,控制器 C 对调整架 T 进行控制,微机等待下一次采样。本微机系 统的自动定向过程由 200 多条汇编指令来执 行,完成一次闭环过程(闭环响应时间 t_L)为 20 ms 左右,实验中使用重复率为每秒 1 次的 脉冲激光器,在二次脉冲输出间隔中,系统有 足够时间完成一次闭环控制。

大之内的旋局温度相复

四、实验结果

1. 前置电路敏感度和微动系统最小角步距

使用 Nd:YAG 脉冲激光器作倍频光源, 其脉宽大约为 10 ns。微机要获得脉冲峰值的 变化量,必须对脉冲进行展宽。前置电路 W 包括脉冲峰值放大、展宽和保持电路。

图3绘出了输入信号和输出信号的关系 曲线。可见,输入与输出基本成线性关系,其 线性回归方程为:

 $\hat{y} = 0.0033\alpha + 0.5101(a)$

式中 a 是线性变密度盘的转角, 乘余标准差为:

 $S_{y} = \sqrt{\frac{1}{24 - 2} \sum_{i=1}^{24} (y_{i} - \hat{y}_{i})^{2}} = 0.0488 \quad (6)$

 $\eta_{\rm SHG} = \sin^2 c \left(\beta \, \Delta \theta\right)$

则有

 $\boldsymbol{\alpha} = \boldsymbol{K} \boldsymbol{\cdot} \boldsymbol{\eta}_{\text{SHG}} \tag{8}$

(7)

当 $\eta_{\text{SHG}}=1$ 时, α 取最大值, 这里 $\alpha=960$, 因此求得K=960, 将式(11)代入式(6), 式(6) 变成

 $\hat{y} = 3.168 \eta_{\text{SHG}} + 0.51$ (9) 且有

 $\Delta \hat{y} = 3.168 \,\Delta \eta_{\text{SHG}} \tag{10}$

当 $-S_y \leq 4\hat{y} \leq S_y$ 时,则可求得 $4\eta_{SHG}$ 的敏感 國为 $-S_\eta \leq 4\eta_{SHG} \leq S_\eta$,其中 $S_\eta = S_y/3.168 =$ 1.54%。将 S_η 转换为峰值处匹配角的角度 为 ±5.44角秒。

KDP 晶体架在晶体调整架上,该调整架的方位和俯仰方向可由微机任意调整,用平 行光管测试的最小角步距为2.73 角秒。

由此可见,系统的控制精度主要取决于 前置电路的最小敏感度 S_n,根据高斯误差定 律,系统的控制 精 度 *E* ≤ 8·S₄₀ = ±16.3 角 秒。

2. 系统寻优实验

按照图2所示系统进行闭环实验。人为 地将倍频晶体偏离相位匹配方向,让系统自 动寻优。图4、图5示出了微机绘出的两块实 验晶体的峰值扫描曲线和爬山法控制过程曲 线。可以看出,系统在原理上实现了倍频转 换效率的自动寻优。 纵坐标是转换效率,横 坐标是爬山步数。

3. 重复性实验

系统能否每次将倍频晶体调整到它的最 佳匹配位置,这是衡量系统优劣的一个极其 重要的指标。通过十次连续的寻优过程,获 得如下数据,见表1所示,实验时基波起伏 $\sigma_w = \pm 0.52\%$ 。对终点求平均值, $\eta_{shg} =$ 97.9%,均方误差 $\sigma_{\eta} = \pm 1.47\%$,转换为匹 配角处的角度均方误差 $\sigma_{\theta} = \pm 5.29$ 角秒。

当一名。《前冬8、时则首求得 如明 的敏感										
=80 ^N .8\.	2=12.1	12 2	23	4.8	5					
nsнал (%)	68.07	35.29	24.37	31.09	10.92					
77SHG锋(%(98.32	99.16	95.80	97.48	98.32					
梁·亚NF ,	16堂	7	8	Ding IC	10					
η _{SHG} 刻(%)	38.66	20.17	22.69	86.97	18.49					
η_{SHG} (%)	100.00	98.32	94.96	97.48	99.16					

在光束质量较差时, $\sigma_w = \pm 4.3\%$,重复 上述过程,得另一实验结果。如表2所示。 $\sigma_\eta = \pm 2.31\%$, $\sigma_\theta = \pm 7.93$ 角秒。显然,系 统重复精度与光束质量的好坏有关,当光斑 质量很差时,系统甚至不能正常工作。

4. 温度变化对系统的影响

温度变化会引起 KDP 晶体折射率变化,从而导致匹配角位置漂移。

从实验结果可知道,系统的一次闭环时间 t_L=20 ms,但由于脉冲激光重复率为每秒 1次,t_L实际上等于1秒。从倍频晶体偏离

N	1	2	3	4	5	6	7
^羽 8HG终 (%)	100.00	97.87	96.80	98,94	93.61	93.61	95.74
η _{Max} —η終 (%)	0.00	2.13	3.20	1.06	6.39	6.39	4.26

匹配方向,取 η_{sHG}=10%,到系统将 η_{sHG} 调 整到最大值所需时间大约为 20 s。

对于温度的变化,例如在成都地区,最大 的气温日较差为 $T_{max}-T_{min}=30.2^{\circ}$ C,其中 T_{max} 、 T_{min} 表示一天之内的最高温度和最低 温度。将 T_{min} 到 T_{max} 之间的曲线用直线代 替,则温度的变化梯度近似为 $\Delta T / \Delta t =$ 0.093% °C/s。由此而引起的匹配角变化仅 为0.0384 角秒,显然,系统的响应时间完全 能够跟上温度的变化。同样,也能消除外界 的振动影响,使晶体保持在理想的状态。

在系统的设计过程中,得到中国科学院 光电技术研究所八室许多同志的热情帮助和 西南技术物理所韩凯同志的指导,一并致谢。

 G. J. Linford et al.; "Precision Orientation Apparatus, Conference on Laser & Electroptics", 10~12 June, 1981, IEEE/OSA, WH6

- [2] 王永初; "最佳控制系统设计基础", 科技出版社, 1980.
- [3] 钱学森,朱健;"工程控制论",下册,科技出版社, 1981.

· 606 ·